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A numerical method for solving the incompressible Navier–Stokes equations with a 5th-
order weighted essentially non-oscillatory (WENO) scheme is presented. The method is
not based on artificial compressibility and is free of tunable parameters such as the artifi-
cial compressibility parameter. The method makes use of the fractional-step method in
conjunction with the low-dissipation and low-dispersion Runge–Kutta (LDDRK) scheme
to improve temporal accuracy of the scheme. The use of a WENO scheme makes it possible
to obtain stable solutions for discontinuous initial data and resolve difficult applications
with strong shear such as Kelvin–Helmholtz instability or turbulence. Good convergence
rate is established for the velocity variables and numerical solutions of the present method
compare well with exact solutions and other numerical results.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

In this paper we present a numerical method for solving the time-dependent incompressible Navier–Stokes equations.
Numerical solutions of the incompressible flow equations are traditionally obtained using either SIMPLE-type pressure cor-
rection methods [30,21,5] or projection methods [8,23,4,6,14,26,15]. There are also methods that make use of the stream-
function and vorticity variables (see e.g., [2,3,29]). While the streamfunction and vorticity method has its attractive
features such as the absence of the pressure variable and less equations to solve, the major disadvantage is that it is difficult
to extend to three-dimensions. In addition, the vorticity at a wall boundary is often difficult to specify. The iterative approach
of SIMPLE-type pressure correction methods can be extended to three-dimensions yet the computational cost is relatively
high compared to that of projection methods which have been largely extended and studied for several decades.

For smooth or low Reynolds number flows, simple second order central spatial schemes (see e.g., [16,8,23,32]) perform
reasonably well. However, for high Reynolds number flows or flows with strong shear, an upwinding scheme has to be ap-
plied. A variety of approaches have been developed in the past to extend the schemes for compressible flows to incompress-
ible ones including artificial compressibility scheme [8,25], the Gudonov-like scheme [4], the ENO scheme [11], and the
WENO scheme [7,34], to name a few. The main issue for the schemes based on artificial compressibility is the high stiffness
for unsteady problem. The WENO scheme was also incorporated through the means of artificial compressibility in [7] so even
though it improved the accuracy in the spatial discretization it still suffers the stiffness of the system when the artificial com-
pressibility has to be minimized. In addition, there is always the question of what is the best choice of the tunable artificial
compressibility parameter which may also be problem dependent. As the applications become more and more demanding in
terms of the accuracy of the scheme, the second order Gudonov-like scheme may become inadequate. Pseudospectral meth-
ods as in [22,28] are highly accurate and have been applied to turbulent problems with success. However, the difficulty with
pseudospectral methods lies in the limitation to relatively simple geometries and to periodic and wall boundaries. Higher
. All rights reserved.
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order compact (HOC) central schemes [24,27] can be an alternative for higher order spatial discretization. However, as there
is no built-in upwinding, it is prone to numerical oscillations especially near a discontinuity. Filtering has to be applied often.
Moreover, since compact schemes involve global rather than nearby-point stencils, extra care has to be taken when paral-
lelizing the schemes.

In the present work, we are mainly concerned with the proper spatial discretization of the convective terms with
high-order schemes. We explore a simple straight-forward way of applying the 5th-order WENO scheme [19] to the
incompressible Navier–Stokes equations without flux splitting that was used in [34]. The primary novelty of the method
as compared to that in [7] is that the WENO scheme is applied to the convective terms without invoking the usual local
characteristics and introducing artificial compressibility. Upwinding is guaranteed and the scheme can readily be used in
applications involving high Reynolds number flows or flows with strong shear or even a discontinuity. The temporal
scheme is based on the fractional-step scheme [23] in conjunction with the optimized two step alternating 4-6 low-dis-
sipation and low-dispersion Runge–Kutta (LDDRK) scheme [18] to improve temporal accuracy of the scheme. To improve
the accuracy in the spatial discretization of the viscous terms, a 6th-order compact scheme of [24] is applied. The lim-
itation of compact schemes in approximating the convective terms in problems involving strong shear will also be dem-
onstrated in this paper.

2. Numerical method

The nondimensionalised Navier–Stokes and continuity equations to be solved for incompressible viscous flows are
@ui

@t
þ uj

@ui

@xj
¼ � @p

@xi
þ 1

Re
@2ui

@xj@xj
; ð1Þ

@ui

@xi
¼ 0; ð2Þ
where Re is the Reynolds number, p the pressure, and ui the velocity components.
The temporal scheme is based on the fractional-step method of [23], with slight modifications, and in conjunction with a

low-dissipation and low-dispersion Runge–Kutta (LDDRK) scheme [18]. For completion, the basic fractional-step scheme
during each Runge–Kutta stage is given by
bui � un
i
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1
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where Hn
i ¼ uj

@ui
@xj

is the convective terms, d=dxi represents discrete finite difference operators and G and D represent discrete
gradient and divergence operators, respectively. Since the Runge–Kutta method is used, no additional special temporal
scheme, such as the Adam–Bashforth method is applied to the convective terms. Also, note that the current target applica-
tions are moderate to high Reynolds number flows, so no implicit treatment to the viscous terms, like the Crank–Nicolson
scheme, is found necessary. Therefore, no implicit solver for bui is needed and the variable p in Eq. (4) is pressure itself as
opposed to the / variable as in [23]. This difference turns out to be critical and advantageous as discussed by [12] in achiev-
ing higher order of accuracy in solving for pressure. The Runge–Kutta scheme can be easily applied by treating the entire RHS
of Eq. (3) as the slope. The optimized two step 4–6 alternating LDDRK scheme in [18] is chosen in this work. A Poisson solve
for pressure using MUDPACK [1] is performed at the end of each Runge–Kutta stage.

A variant of the staggered mesh of [16] is used as depicted in Fig. 1. The cell corners are represented by circles and the
centers of the faces are denoted by crosses in the figure. The pressure variable is defined at the corners of each cell, and the
velocity variables on the faces that are parallel to their directions, e.g., u and v are defined on horizontal and vertical edges
of the cell in two dimensions, respectively. The mesh is staggered in this way so that a no-slip boundary condition can be
more conveniently imposed. Of course, if the wall-normal velocity needs to be specified more conveniently, the mesh can
always be staggered in the original way [16]. As already mentioned in the introduction, the spatial discretization of the
convective terms Hn

i is the 5th-order WENO scheme [19]. Typically, artificial compressibility is introduced to the scheme
when extending the schemes developed for compressible flows such as WENO to incompressible one [7]. In the present
work, a straight-forward application of the 5th-order finite difference WENO scheme to the convective terms is explored
and verified. In a similar spirit of applying ENO to the incompressible Navier–Stokes equation [11], the natural implemen-
tation of upwinding is to use the signs of the velocities in front of the derivatives @ui

@xj
in the convective terms in Eq. (1) at

appropriate locations, and to apply WENO equation by equation. For completion, let f be the velocity components ui in Eq.
(1), the reconstruction of f along the directions of uj in the convective terms is based on the 5th-order WENO scheme and
can be expressed as



u(i+1/2,j,k)u(i−1/2,j,k)

v(i,j−1/2,k)

v(i,j+1/2,k)

p(i,j,k) p(i+1,j,k)

p(i+1,j+1,k)p(i,j+1,k)

Fig. 1. The staggered mesh in two dimensions. Note that the cell corners are represented by circles and the centers of cell faces are denoted by crosses.
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f̂ jþ1=2 ¼
X3

k¼1

xkf̂ k
jþ1=2;
where f̂ k
jþ1=2 is a second order polynomial reconstruction of f on the kth set of stencils and the nonlinear weights xk are
xk ¼ fxk=
X3

l¼1

fxl ;fxl ¼
cl

ð�þ blÞ
2 : ð6Þ
As mentioned above, upwinding can be naturally determined by the signs of velocities in the convective terms. For the cal-
culation of f̂ k

jþ1=2, we use ujþ1=2 which is simply averaged from its neighbors to determine upwinding. If ujþ1=2 P 0, we have
c1 ¼ 0:3; c2 ¼ 0:6; c3 ¼ 0:1, and f̂ k

jþ1=2 can be computed as
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with the smoothness indicators bl given by
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For ujþ1=2 < 0, we have c1 ¼ 0:1; c2 ¼ 0:6; c3 ¼ 0:3, and the formulations for f̂ k
jþ1=2 and the smoothness indicators become
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Finally, � is set to 10�6 to avoid divisions by zero in the calculations of the smoothness indicators. To summarize, the deriv-
atives @ui

@xj
in the convective terms uj

@ui
@xj

are approximated with exactly the same procedure as that for the derivative of a scalar
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in [19]. The upwinding is determined by the signs of the velocities in front of the derivatives @ui
@xj

at appropriate locations. It is
worthwhile to point out that, as long as the divergence constraint, namely Eq. (2), is satisfied well by refining the grid res-
olution, the current scheme can be reasonably conservative for relatively smooth problems (see Section 3.3). The advantage
of using the non-conservative form as opposed to the conservative form is given in the Discussion section. As mentioned in
the introduction section, an alternative high-order discretization scheme for the convective terms is the high-order compact
(HOC) scheme. The staggered 6th-order compact scheme in [27] is also implemented and compared to the WENO scheme
here. An obvious advantage of the current approach using WENO is that it is easier to implement and parallelize than com-
pact schemes which involve global rather than nearby-point stencils as in the WENO scheme. Unlike the convective terms,
the viscous terms can be approximated by higher order central schemes without problems. In fact, the 6th-order compact
scheme in [24] is chosen here for the spatial discretization of the viscous terms to achieve higher accuracy. For periodic
boundary conditions, a slightly perturbed form of the tridiagonal system needs to be solved for the compact schemes:
b1 c1 a1

a2 b2 c2

a3 b3 �
� � cn�1

cn an bn

26666664

37777775
x1

x2

�
�

xn

26666664

37777775 ¼
d1

d2

�
�
dn

26666664

37777775:
We make use of the Sherman–Morrison formula to avoid the additional operations of Gaussian elimination and still use the
Thomas algorithm. The system to be solved is now
ðAþ uvTÞx ¼ d
where
A ¼

0 c1 0
a2 b2 c2

a3 b3 �
� � cn�1

0 an bn � ða1=b1Þcn

26666664

37777775;
uT ¼ ½b100 . . . 0cn�; vT ¼ ½100 . . . 0a1=b1�:
The solution is then obtained as
x ¼ y� ðvT yÞ=ð1þ ðvT qÞÞq
where x and q are obtained by solving
Ay ¼ d;Aq ¼ u
with the Thomas algorithm applied to the 3rd to the nth row of A, and after ½x3; . . . ; xn� are obtained, x1 and x2 can be easily
calculated from the first two rows of A.

Finally, for the discretization of the pressure solve, the divergence of the intermediate velocity at the corners of each cell
(where the pressure variable is defined) is approximated by
DðûÞ ¼ 1
Dx

ûiþ1
2;j
� ûi�1
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and the discrete operator for the second order elliptic operator is given by
DGðpi;jÞ ¼
piþ1;j � 2pi;j þ pi�1;j

ðDxÞ2
þ
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3. Numerical results

3.1. Taylor–Green vortex test

The Taylor–Green vortex test problem has been widely used for verification purpose for incompressible viscous flow solv-
ers. It is also used here to establish the order of accuracy of the method. The 2D exact solution to the unsteady problem is
given by
uðx; y; tÞ ¼ � cosðkxÞ sinðkyÞexpð�2k2t=ReÞ;
vðx; y; tÞ ¼ sinðkxÞ cosðkyÞexpð�2t2=ReÞ;

pðx; y; tÞ ¼ � 1
4
ðcosðkxÞ þ cosðkyÞÞexpð�4k2t=ReÞ;
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a solution to the Navier–Stokes and continuity equations. The numerical solutions are computed on a square domain of side
2p with periodic boundary conditions in both x and y-direction.

We establish the formal order of accuracy of our scheme in space by running a Re ¼ 100 Taylor–Green vortex with k ¼ 4
for 100 steps with a fixed time step of 0.001. Three different resolutions with 322, 642 and 1282 uniform grid points are used
in the study. Table 1 shows the convergence rate of the scheme. A convergence rate of better than 3rd-order is clearly seen
for the velocity variables while that for pressure is essentially 2nd-order. It is quite remarkable that the full 2nd-order accu-
racy of the discretization of the elliptic operator (Eq. 7) in the pressure Poisson solve is achieved. This is expected as our tem-
poral discretization is explicit and is essentially equivalent to the Gauge method by [12].
Table 1
Maximum error after 100 time steps for TG test. dt = 0.001. The errors and convergence rates in u-velocity for Re ¼ 1e6 and advecting Re ¼ 100 TG vortex are
also shown in the bottom two rows.

Variables 32 Rate 64 Rate 128

u 3:32e� 3 3:44 3:06e� 4 4:47 1:38e� 5
v 3:32e� 3 3:44 3:06e� 4 4:48 1:37e� 5
p 3:98e� 2 2:36 7:76e� 3 1:87 2:12e� 3
jrpj 8:90e� 1 1:83 2:50e� 1 1:94 6:50e� 2
Re ¼ 1e6 3:56e� 3 3:39 3:39e� 4 4:51 1:49e� 5
Advecting 1:98e� 2 4:09 1:16e� 3 4:83 4:07e� 5
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Fig. 2. Streamlines (top panels) and vorticity (bottom panels) of driven cavity for Re ¼ 100 (left panels) and 3200 (right panels). The grid resolution is
128 � 128 and time step is 0.001.

Table 2
Maximum absolute error of velocity component u in numerical solutions of the two-dimensional Taylor–Green flow. The HOC results are from Pandit et al. [29].

Time WENO Sixth-order compact HOC of [29]

t ¼ 1 2:98e� 5 2:82e� 6 2:19e� 2
t ¼ 10 2:12e� 4 8:59e� 6 1:87e� 2
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The effect of one parameter worth to examine is � in the nonlinear weights xk (Eq. 6) of the WENO scheme as it was found
that the values of � may alter the convergence rate of the scheme in the one-dimensional problems examined in [17]. Three
more values of �, namely 10�4, 10�12 and 10�16, in addition to the standard value of 10�6 are checked here and the results are
basically insensitive to the values of �. Therefore, the standard value of 10�6 is used throughout this paper. The accuracy in
our problem is presumably limited by the 2nd-order Poisson solve and not by the subtleties such as the value of �. This
points to the possible future improvement by implementing the solutions proposed in [6,20] in addition to that for the non-
linear weights in WENO proposed in [17]. A deferred correction method was actually used in [20]. Finally, the gradient of
pressure also seems to converge at a second order rate as seen in the table.

To demonstrate the robustness of the current scheme, a high Re of 1e6 and an advecting (with background velocity of
(U,V) = (1,1)) Taylor–Green vortex are simulated and the maximum absolute errors in u-velocity are shown to also converge
at a rate better than 3rd-order in the bottom two rows of Table 1. The convergence behaviors of other variables are similar to
those of the reference case of Re ¼ 100 and k ¼ 4.

We do recognize that for smooth problems like the Taylor–Green vortex, the performance of high-order compact schemes
can be better than the WENO scheme as can be seen in the following test. The same Taylor–Green vortex at Re ¼ 100 and
k ¼ 1 with a grid of 32 � 32 and a time step of 0.01 is simulated with both WENO and the staggered 6th-order compact
scheme of [27], and the errors are compared in Table 2. It is seen that, due to its spectral like resolution, the compact scheme
does perform remarkably better than the WENO scheme for this test. However, it should be pointed out that this is probably
only true for smooth problems, like the Taylor–Green vortex. For more difficult applications, like the ones with strong shear
or discontinuities, the WENO scheme will perform much better than compact schemes as will be illustrated in Section 3.3
and in Discussion section. In addition, the current scheme equipped with WENO and Runge–Kutta scheme does seem to per-
form better than some of the recent high-order schemes. For example, Table 2 also lists the errors in the HOC scheme of [29]
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provides a stringent test when q! 0. Unlike in the TG and driven cavity tests, if the convective terms are not treated with
upwinding, numerical oscillations will occur in this kind of test with strong shear.

To compare with the results by Bell et al. [4], we first run the inviscid test with q ¼ 1=30 and d ¼ 0:25 on the same sets of
grid as in [4], i.e., 1282, 2562 and 5122, and with the same time step that corresponds to a CFL of 0.5. The similarity in the
development of the flow features are seen for all the grids. Here, we only show the vorticity contours on 2562 grid in Fig. 4
from t = 0.4 to 1.8 for comparison. This corresponds to Fig. 2 in [4]. The evolution and flow patterns look quite similar to
those of [4]. Also, like in [4], there is no obvious evidence of problems with large dispersive errors in the presence of large
gradients, such as oscillations or distortions in the shape of the large vorticies. The kinetic energy as defined by
K ¼
Z

U � U dxdy
is plotted in Fig. 5 and should be compared to Fig. 4 in [4]. Instead of converging at a rate of second order as in [4], the kinetic
energy is converging at a 4th-order rate in our scheme as expected. It is also quite remarkable that K in the current scheme
remains essentially invariant for longer duration than that of [4]. For example, the bottom panel of Fig. 5 is plotted with the
same scale as the bottom left panel of Fig. 4 in [4] and it is seen that K is essentially invariant for 512 � 512 case upto t �1.2
here whereas that of [4] keeps decreasing appreciably. We suggest that the conservation error observed here is presumably
due to the numerical dissipation in the scheme when large gradients are developed as seen in the evolution of the shear at
late time. The numerical dissipation can be appreciated more easily in the simple one-dimensional example shown in Fig. 12
in the Discussion section. Nonetheless, the scheme is reasonably conservative in practice at the early time when the gradi-
ents in the flow are not too large yet. The conservation can also be improved by refining the grid resolution as seen in Fig. 5 so
that the divergence constraint dictated by Eq. (2) is satisfied better. It is also worthwhile to present the solutions at coarser
t
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Fig. 5. Kinetic energy as a function of time for the inviscid shear layer with q ¼ 1=30. Bottom panel is the enlarged view of the top panel.



2434 J. Zhang, T.L. Jackson / Journal of Computational Physics 228 (2009) 2426–2442
resolutions to demonstrate the reasonable approximations by our scheme at these resolutions. These are shown in Fig. 6
where the solutions at t ¼ 1:8 corresponding to the last panel in Fig. 4 are plotted for grids of 322, 642 and 1282. The number,
shape and location of the major vorticies are seen to be reasonably preserved and no spurious vorticies are seen.
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Fig. 6. Vorticity contours at t ¼ 1:8 (corresponding to the last panel of Fig. 4) for the inviscid shear layer with q ¼ 1=30 on, from top to bottom, 32 � 32,
64 � 64 and 128 � 128 grid, respectively.
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Kinetic energy based on the perturbational velocities
F

u0ðx; y; tÞ ¼uðx; y; tÞ � u0ðx; yÞ;
v 0ðx; y; tÞ ¼vðx; y; tÞ;
where u0ðx; yÞ is the initial u-velocity given by Eq. (8), is also computed and plotted in Fig. 7. The energy apparently shows an
exponential growth as predicted by the linear theory [9].

To assess how HOC schemes would perform for this kind of test with strong shear without filtering, we run the same test
with the staggered 6th-order compact scheme [27]. The vorticity field is shown in Fig. 8 at t ¼ 1:8. Evidence of problems in
the presence of large gradients, such as oscillations in the solution indeed appears. Filtering will be needed especially when
the grid is coarse to fix the problem. This is beyond the scope of the current work.

We now return to our WENO scheme and the test is next computed with q! 0 at Re of 1e4 and for Euler equations as
shown in Figs. 9 and 10, respectively. These figures should be compared to the corresponding cases in Figs. 5 and 7 in [4].
Qualitative similar features, such as the number, locations and shapes of the developed vorticies, are indeed seen for
Re ¼ 1e4 case especially at t ¼ 0:6. However, there seems to be appreciable differences in the Euler case which is probably
 0=
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4. Discussion

To demonstrate more clearly the arguments about the accuracy and the advantage of the current WENO scheme, the com-
mon test of solving the 1D transport equation,
Fig. 1
@f
@t
þ @f
@x
¼ 0; ð10Þ
is performed using the 5th-order WENO [19], the 2nd-order Gudnov-like [4], and the staggered 4th-order compact [27]
schemes. The scheme for time integration is the two step 4-6 alternating LDDRK for all the spatial schemes. A step function
is used as the initial profile and the boundaries are periodic. The number of grid points is 64 and the time step is 0.01. The
results are compared in Fig. 12 for one period. The 5th-order WENO scheme performs well in the presence of a discontinuity
as expected. The advantage of WENO being more accurate than 2nd order schemes also becomes much more clear in this
simple test. The compact scheme without filtering fails to produce reasonable solution in problems involving a discontinuity
as seen here or large gradients as seen in Section 3.3, and may only be good for relatively smooth problems or problems with
moderate gradients.

Next, we would like to demonstrate the capability of our current WENO scheme in the direct numerical simulation (DNS)
of turbulence in solid rocket motors. Tests of interest to the rocket community such as the turbulent flow in a planar periodic
rocket in [31] have been carried out which will be discussed briefly here and in greater detail in a forthcoming publication. As
a model of the core flow of a solid propellant rocket, the incompressible flow between parallel walls driven by injection
through the walls is simulated. A multiscale asymptotic analysis similar to that used by Spalart [33] is used to treat the flow
acceleration in the streamwise direction. The flow can then be homogenized and a periodic boundary condition can be used
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(see [31] for details). The equations to be solved are the incompressible NS equations with source terms to take into account
the mass addition and acceleration due to injection
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@ui

@xi
¼ ���u; ð11Þ

@ui

@t
þ �uðui � d2i �uiÞ þ uj

@ui

@xj
¼ � @p

@xi
þ d1i

p2

4�
þ 1

Re
@2ui

@xj@xj
; ð12Þ
where � ¼ Vinj=Um is a small parameter and is the ratio of the injected mass flow rate over the mass-averaged core flow rate,
and an overbar denotes a mean quantity. The Case A in [31] corresponding to � ¼ 0:04 is computed here with a uniform 2562

grid. Fig. 13 shows the flow feature characterized by near-wall-large-scale coherent structures inclined at an angle opposite
to the mean flow direction seen in [31] is reproduced here. The rms velocities shown in Fig. 14 also exhibit similarities to
those in [31], e.g., the maximum of cross stream rms fluctuations is at the center of the channel while two maxima close
to the walls appear for streamwise rms fluctuations. Note that the current simulation is 2D whereas that in [31] is 3D. This
is the reason why the rms velocities are stronger in the current simulation due to the lack of the freedom in the spanwise
direction. Also, note that the statistical sample here is not as large as that in [31] also due to the lack of the spanwise direc-
tion that can be used to improve the statistics.

Finally in this section, we would like to discuss in some detail about the conservation property of our current scheme.
Because of the incompressiblity condition (Eq. 2), the Navier–Stokes equations, i.e., Eq. 1 can also be written in conservative
form
@ui

@t
þ @uiuj

@xj
¼ � @p

@xi
þ 1

Re
@2ui

@xj@xj
; ð13Þ
and therefore, solved in conservative form. It has the advantage of being more conservative and less dissipative as shown by
[26]. This seems to be also the case here for the shear test with q ¼ 1=30 as shown by the kinetic energy evolution in the top
panel of Fig. 15. The solution by conservative form is more conservative than that by non-conservative form in the sense that
the kinetic energy is closer to being a constant. However, as the application becomes more difficult like the shear with dis-
continuous initial condition, the trend seems to be reverted. This is shown in the bottom panel of Fig. 15 for the inviscid
q ¼ 1=3e6 case. This is presumably due to the fact that solving in conservative form is more prone to numerical noise as also
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Fig. 13. Instantaneous vorticity field in planar periodic rocket.
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remain stable for even discontinuous initial data where compact schemes without filtering would generally fail. These prop-
erties are all highly desirable for a good numerical scheme to be both robust and highly accurate at the same time. A 6th-
order compact scheme is used for the viscous terms to achieve a higher accuracy. Finally, to improve temporal accuracy of
the scheme, the fractional-step method is equipped with the optimized two step alternating 4–6 low-dissipation and low-
dispersion Runge–Kutta (LDDRK) scheme.
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